首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   124篇
  国内免费   171篇
测绘学   40篇
大气科学   373篇
地球物理   192篇
地质学   96篇
海洋学   60篇
天文学   409篇
综合类   26篇
自然地理   54篇
  2024年   3篇
  2023年   4篇
  2022年   14篇
  2021年   14篇
  2020年   10篇
  2019年   12篇
  2018年   18篇
  2017年   14篇
  2016年   12篇
  2015年   15篇
  2014年   24篇
  2013年   43篇
  2012年   17篇
  2011年   26篇
  2010年   35篇
  2009年   77篇
  2008年   87篇
  2007年   105篇
  2006年   109篇
  2005年   79篇
  2004年   66篇
  2003年   55篇
  2002年   53篇
  2001年   43篇
  2000年   57篇
  1999年   41篇
  1998年   49篇
  1997年   27篇
  1996年   28篇
  1995年   19篇
  1994年   14篇
  1993年   15篇
  1992年   14篇
  1991年   8篇
  1990年   3篇
  1989年   11篇
  1988年   8篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1250条查询结果,搜索用时 30 毫秒
41.
鲅鱼圈地区污染气象特征分析   总被引:10,自引:6,他引:4       下载免费PDF全文
利用近3a的鲅鱼圈地区地面常规气象资料和2005年3~4月鲅鱼圈地区低空污染气象探测资料,分析了鲅鱼圈地区低空污染气象特征。结果表明:鲅鱼圈地区各类型风速廓线出现频率比较均匀,而且由于地面粗糙度较大,因此风速廓线指数比平原地区稍大。  相似文献   
42.
Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.  相似文献   
43.
We present the first detections of the ground-state H216O (110-101) rotational transition (at 556.9 GHz) and the 13CO (5-4) rotational transition from the atmosphere of Venus, measured with the Submillimeter Wave Astronomy Satellite (SWAS). The observed spectral features of these submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. The measured water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the line in December 2002 and July 2004, and no detections in January and March 2004. Retrieval of atmospheric parameters was performed using a multi-transition inversion algorithm, combining simultaneous retrievals of temperature, carbon monoxide, and water profiles under imposed constraints. Analysis of the SWAS spectra resulted in measurements or upper limits for the globally averaged mesospheric water vapor abundance for each of the four observation periods, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. These results are fully consistent with the long-term study of mesospheric water vapor from millimeter and submillimeter observations of HDO [Sandor, B.J., Clancy, R.T., 2005. Icarus 177, 129-143]. The December 2002 observations detected very rapid change in the mesospheric water abundance. Over five days, a deep water absorption feature consistent with a water vapor abundance of 4.5±1.5 parts per million suddenly gave way to a significantly shallower absorption, implying a decrease in the water vapor abundance by a factor of nearly 50 in less that 48 h. In 2004, similar changes in the water vapor abundance were measured between the March and July SWAS observing periods, but variability on time scales of less than a week was not detected. The mesospheric water vapor is expected to be in equilibrium with aerosol particles, primarily composed of concentrated sulfuric acid, in the upper haze layers of the Venus atmosphere. If true, moderate amplitude (10-15 K) variability in mesospheric temperature, previously noted in millimeter spectroscopy observations of Venus, can explain the rapid water vapor variability detected by SWAS.  相似文献   
44.
Three decades of slope streak activity on Mars   总被引:1,自引:0,他引:1  
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage.  相似文献   
45.
46.
We suggest the concept of the Earth’s lithosphere as a geocosmic system of mobile lithospheric plates affected by both external astronomical influences (solar radiation, tides) and planetary factors—the Earth’s atmosphere, hydrosphere, and mantle convection. The annual period in seismicity is shown to have a clear cosmic origin related to the seasonal periodicity of solar radiation in the northern and southern hemispheres. The atmosphere can act as a transmitter of the annual periodicity to the lithospheric plates. The formulated concept of the lithosphere has led us to put forward testable hypotheses about the dynamical atmospherelithosphere relationship. These hypotheses form the basis for the next program of research on the Earth’s lithosphere as a geocosmic system.  相似文献   
47.
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS=190°–260°, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.  相似文献   
48.
Bruce A. Cantor 《Icarus》2007,186(1):60-96
From 15 September 1997 through 21 January 2006, only a single planet-encircling martian dust storm was observed by MGS-MOC. The onset of the storm occurred on 26 June 2001 (Ls=184.7°), earliest recorded to date. It was initiated in the southern mid-to-low latitudes by a series of local dust storm pulses that developed along the seasonal cap edge in Malea and in Hellas basin (Ls=176.2°-184.4°). The initial expansion of the storm, though asymmetric, was very rapid in all directions (3-32 m s−1). The main direction of propagation, however, was to the east, with the storm becoming planet encircling in the southern hemisphere on Ls=192.3°. Several distinct centers of active dust lifting were associated with the storm, with the longest persisting for 86 sols (Syria-Claritas). These regional storms helped generate and sustain a dust cloud (“haze”), which reached an altitude of about 60 km and a peak opacity of τdust∼5.0. By Ls=197.0°, the cloud had encircled the entire planet between 59.0° S and 60.0° N, obscuring all but the largest volcanoes. The decay phase began around Ls∼200.4° with atmospheric dust concentrations returning to nominal seasonal low-levels at Ls∼304.0°. Exponential decay time constants ranged from 30-117 sols. The storm caused substantial regional albedo changes (darkening and brightening) as a result of the redistribution (removal and deposition) of a thin veneer of surface dust at least 0.1-11.1 μm thick. It also caused changes in meteorological phenomena (i.e., dust storms, dust devils, clouds, recession of the polar caps, and possibly surface temperatures) that persisted for just a few weeks to more than a single Mars year. The redistribution of dust by large annual regional storms might help explain the long period (∼30 years) between the largest planet-encircling dust storms events.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号